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Abstract. Membranes in thermal equilibrium are well known to exhibit Brownian motion type shape fluc-
tuations. Membranes containing active force centers — such as chemically active membrane proteins —
suffer additional non-equilibrium shape fluctuations due to the activity of these force centers. We demon-
strate, using scaling arguments, that non-equilibrium shape fluctuations are in general greatly amplified
by the presence of a nearby wall or membrane due to the absence of a fluctuation-dissipation theorem. For
adhesive membranes, this fluctuation magnification effect may facilitate the establishment of bonding. For
non-adhesive membranes, fluctuation magnification produces a long-range repulsive pressure which can
exceed the well known Helfrich repulsion due to purely thermal fluctuations.

PACS. 87.22.Bt Membrane and subcellular physics and structure – 82.65.Dp Thermodynamics of surfaces
and interfaces

1 Introduction

Membranes are flexible bilayers of surfactant molecules
embedded in an (usually) aqueous medium. In biology
they play a key role as partitioning walls of cells [1], but
membranes have also been investigated extensively in the
physics literature [2], mostly in the form of pure, single-
component bilayers. Membranes of biological interest dif-
fer from single-component bilayers in a number of ways.
From the view-point of statistical physics, the most fun-
damental difference lies in the fact that biomembranes in
general contain large numbers of chemically active cen-
ters (“force centers”) which dissipate energy. Examples
are membrane proteins like ion channels, ion pumps, or
photo-active membrane proteins. Biomembranes can also
be attached to actin-myosin fibers which exert localized
forces. The chemical activity dissipates energy provided
by ATP to ADP conversion, concentration gradients, or
an external light source. The equilibrium thermodynamic
properties of the single-component membrane are well ex-
plained on the basis of an effective elastic free energy: the
Helfrich Hamiltonian [3]. One of the most striking predic-
tions of this theory involves the role played by thermal
fluctuations when membranes interact with each other or
with hard walls [4]. A membrane that is not under tension
and in between a pair of walls feels a repulsive pressure
P (d) due to the loss of configurational entropy suffered by
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the confinement of the membrane. It is of the order of

P (d) ∼=
(kBT )2

κd3
(1.1)

with κ the bending modulus of the membrane, and d the
spacing between the walls. Because of the power-law de-
pendence, this “entropic” interaction dominates — for di-
lute systems — over short-range membrane forces like the
screened Coulomb interaction. Detailed X-ray synchrotron
studies [5] of aligned stacks of surfactant bilayers (“Lα”
phase) have confirmed equation (1.1) for dilute systems.
Membranes adhering to a wall through an attractive force
— like the van der Waals interaction — are normally un-
der tension. Entropic repulsion between a wall and a tense
membrane is not long ranged and decays exponentially as

P (d) ∼= exp

(
−α

γd2

kBT

)
(1.2)

with α a numerical constant and γ the membrane tension.
An intuitively appealing way of arriving at equations

(1.1, 1.2) is by introducing the concept of membrane-wall
“collisions” [6,7]. Every time a membrane is in contact
with a wall, it loses of order kBT in entropic free energy.
The free-energy increase per unit area V (d), due to the
confinement between the plates, is then:

V (d) ∝
kBT

L2
c(d)

(1.3)

with L−2
c (d) the area concentration of the collisions. The

collision length Lc, i.e. the mean spacing between colli-
sions, is then found by computing the mean square 〈u2(L)〉
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of membrane height fluctuations of an L by L patch of
unconfined membrane:

〈u2(L)〉 ∝



(
kBT

κ

)
L2 γ = 0

(
kBT

γ

)
ln(L/a) γ 6= 0

(1.4)

where a is a microscopic length scale. The collision length
is now the patch size for which 〈u2(Lc)〉 ≈ d2 since beyond
that length the patch senses the presence of the wall. This
argument gives:

Lc(d) ∝


√

κ

kBT
d γ = 0

a exp(const.γd2/kBT ) γ 6= 0.

(1.5)

Note that we are implicitly assuming in equation (1.4)
that the height correlation function is not affected by
the wall for length scales less than the collision length.
Using equations (1.4) and (1.5) in equation (1.3) leads to
equations (1.1, 1.2). Equation (1.1) also can be derived by
minimization of the free energy of confinement [4].

The arguments used to compute the wall force crucially
depend on the applicability of equilibrium statistical me-
chanics. However, we are not allowed to assume that an ac-
tive membrane, i.e. a membrane containing active centers,
evolves spontaneously to a state which minimizes the free
energy, so there is no variational principle available any
longer and we should not expect equation (1.1) or (1.2)
to be valid. In this article, we examine the interaction be-
tween an active membrane and a wall in the following spe-
cial case: the active membrane is in steady-state. We thus
assume that the average shape and structure of the mem-
brane are not evolving in time. This assumption allows
us to study the equal-time correlation function 〈u2(L)〉 of
active membranes, which played such an important role
for the equilibrium behavior of membranes. However, as
shown in an earlier paper [8], the height correlation func-
tion 〈u2(L)〉 is no longer given by equation (1.4) but, in
general, depends on kinetic parameters like the solvent vis-
cosity, the membrane permeability, the diffusion constant
and the autocorrelation time of the force centers.

Of particular importance for the following is the role
of hydrodynamic interaction. For a membrane in ther-
mal equilibrium, we are guaranteed by the fluctuation-
dissipation theorem that we do not need to be concerned
about membrane-wall interaction mediated by the solvent,
since the equal-time correlation functions cannot depend
on the solvent viscosity. For a non-equilibrium membrane,
the fluctuation-dissipation theorem does not apply and, in
general, we cannot neglect long-range hydrodynamic inter-
actions mediated by the solvent: a non-equilibrium mem-
brane can interact hydrodynamically with a wall. Hydro-
dynamic coupling between a membrane and a wall puts
the concept of sharp membrane-wall collision into ques-
tion: the interaction between a membrane immersed in

solvent and a wall is obviously “spread-out” rather than
localized to a small region of contact.

A direct calculation of the hydrodynamic interaction
between a membrane and a wall is a rather complex prob-
lem: the Helfrich wall force is qualitatively similar to os-
motic pressure, and a kinetic (i.e. hydrodynamic) deriva-
tion of the equilibrium osmotic pressure of solutions (van’t
Hoff’s Law) remains a long- standing unsolved problem
[9]. Instead, we propose in this paper a scaling descrip-
tion of the equal-time correlation function and of the wall
force for steady-state active membranes in embedding sol-
vents. In the infinite medium limit, this scaling procedure
reproduces the known results for membranes in thermal
equilibrium, while for active membranes it reproduces the
results of [8]. For a membrane fluctuating near a wall, our
procedure predicts that the non-equilibrium height cor-
relation function 〈u2(L)〉 is amplified. The amplification
factor depends on the nature of the noise and on whether
or not the membrane is under tension:

Tense Tensionless

Shot-noise (L/d)3 (L/d)3

Concentration (L/d)6 (L/d)3

Fluctuations

(concentration fluctuations are force fluctuations exerted
on the membrane due to fluctuations in the concentration
of active force centers). Fluctuation amplification is a di-
rect consequence of the absence of a fluctuation-dissipation
theorem. The amplitude of non-equilibrium force fluctua-
tions is not directly affected by the wall. However, a nearby
wall is well known to greatly decrease the relaxation rate of
membranes. The net effect is an amplification of the mem-
brane shape fluctuations. For equilibrium membranes, the
fluctuation-dissipation theorem guarantees that reduced
relaxation rates are off-set by reduced effective thermal
noise amplitudes.

Fluctuation amplification can have different consequen-
ces depending on whether the membrane interacts with
the wall (or another membrane) via repulsive (non-adhe-
sive membrane) or attractive (adhesive membrane) inter-
actions. For non-adhesive membranes, the amplification
effect produces a new wall force:

P (d) ∝ P0

(
δ

d

)α
(1.6)

Tense Tensionless

Shot-noise α = 6 α = 7/2

Concentration α = 4/3 α = 1

Fluctuations

with P0 local pressures and δ length scales to be speci-
fied later (validity restrictions on these results are given
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Fig. 1. Definition of the notations used in the text: (a) without
wall, (b) with wall: note that the “collision” length Lc does not
correspond to real physical collisions.

in Sect. 4). The non-equilibrium contribution to the wall
force exceeds the Helfrich force in the large d limit for the
case of concentration fluctuations.

For adhesive membranes, fluctuation magnification
should have a surprising effect: two adhesive membranes
approaching each other should first increase their fluc-
tuation amplitude, as if they were “searching” for each
other. The increased fluctuation amplitude could then pro-
duce contact followed by establishment of an adhesive link
between the two membranes. Fluctuation enhancement
could thus play an important role in cell-cell interaction.

2 Membrane dynamics

2.1 Equation of motion

We characterize the geometrical shape of a fluctuating
membrane by the time-dependent displacement u(r⊥, t)
of the membrane above a surface (the x−y plane) along
the normal (z-direction), with r⊥ the position vector in
the x−y plane (Fig. 1a). The membrane is embedded in
a solvent which is able to permeate the membrane. We
assume that the solvent does not contain any imperme-
able solute molecules and we do not consider any osmotic
pressure differences across the membrane. The solvent of
viscosity η is supposed to be incompressible. The solvent
flow is characterized by the hydrodynamic flow velocity

field v(r, t). To the lowest order in u(r⊥, t) (and its gra-
dients), the elastic free energy of the membrane is given
by:

FH =

∫
d2r⊥

{
1

2
γ(∇⊥u)2 +

1

2
κ(∇2

⊥u)2

}
(2.1)

with γ the tension and κ the Helfrich bending energy.
The linearized hydrodynamic equations of motion of the
membrane and solvent are:

∂u(r⊥, t)

∂t
− vz(r⊥, z = 0, t) = λp{δP (r⊥, t) + fp(r⊥, t)

+ fa(r⊥, t)} (2.2a)

η∇2v(r, t) =∇P (r, t) +
δFH

δu(r, t)
δ(z)ẑ + fh(r, t) (2.2b)

∇ · v(r, t) = 0. (2.2c)

Equation (2.2a) represents Darcy’s law for the permeation
of the solvent through the membrane. The left-hand side
is the relative flow velocity between the membrane and the
solvent. It measures the solvent volume flow per unit area
permeating the membrane, which, according to Darcy’s
law, must be proportional to the force per unit area ex-
erted on the membrane. The proportionality constant, λp,
is the membrane permeability. The quantity in brackets
on the right-hand side is the force per unit area. The first
term, δP , is the discontinuity of the hydrodynamic pres-
sure P (r, t) across the membrane (recall that we are ex-
cluding osmotic pressure discontinuities). The second con-
tribution, fp, represents the contribution to the force per
unit area due to equilibrium thermal fluctuations. Accord-
ing to the fluctuation-dissipation theorem:

〈fp(r⊥, t)〉 = 0 (2.3a)

〈fp(r⊥, t)fp(r′⊥, t
′)〉 = 2kBTλ

−1
p δ(r⊥ − r′⊥)δ(t− t′).

(2.3b)

The final contribution, fa, is the force due to the active
centers and will be specified below.

Equation (2.2b) is the Stokes equation for an incom-
pressible solvent at low Reynolds number. The quantity
on the right-hand side of equation (2.2b) is the force per
unit volume exerted on the solvent. The first term is the
usual hydrodynamic pressure gradient. To understand the
second term, note that δFH

δu(r,t) is the (elastic) force per

unit area exerted by the membrane on the solvent along
the membrane normal (z-direction) since FH is the mem-
brane free energy per unit area. The last term in brack-
ets, fh, is the force density exerted on the solvent due
to equilibrium thermal fluctuations. From the fluctuation-
dissipation theorem it follows that:

〈fh(r, t)〉 = 0 (2.4a)

〈fh(r, t)ifh(r′, t′)j〉 =− 2kBTη{−δij∇
2 + ∂i∂j}

× δ(r− r′)δ(t− t′). (2.4b)
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Fig. 2. Schematic representation of a membrane with active
force centers.

There is no non-equilibrium contribution to the force den-
sity in the Stokes equation, because we are considering
here only intrinsic active centers, such as membrane-asso-
ciated proteins or embedded proteins not attached to the
cytoskeleton. By Newton’s Third law, intrinsic active cen-
ters cannot exert a net force on the solvent (although there
is a zero-average localized area force profile surrounding
an active membrane protein, which we are not including).
If the cytoskeleton was exerting a force on the membrane
then its contribution would appear in the right-hand side
of equation (2.2b). Finally, note that if we integrate equa-
tion (2.2b) along the z-direction across a thin slab contain-
ing the membrane we find for the pressure discontinuity:

δP (r⊥, t) ∼= −
δFH

δu ((r⊥, t))

= γ∇2
⊥u− κ∇

4
⊥u (2.5)

which simply states that the membrane is in local me-
chanical equilibrium (for tensionless membranes, γ = 0 in
Eq. (2.5)).

Equation (2.2c) is the usual mass conservation equa-
tion for an incompressible flow.

We have now to specify the nature of the active force
centers. The linearized hydrodynamic equations of motion
described above followed from an application of general
hydrodynamic principles to membranes, and are valid at
long length and time scales under the conditions stated
(provided we can neglect non-linear terms). However, we
are forced to make more specific assumptions concerning
the nature of the force centers. We assume that the mem-
brane patch contains nf active centers localized at posi-
tions r⊥ = Rj(t) with j = 1, 2, ..., nf (Fig. 2). Each center
exerts a force Fj(t), the “firing sequence”, with

〈Fj(t)〉 = Fa

〈Fj(t)Fj′(t
′)〉 = F 2

a + δj,j′I(t− t′) (2.6)

where Fa is the time-averaged mean force per center, and
I(t) the autocorrelation function of the firing sequence
(the mean force Fa is non zero because the activity of
membrane proteins is usually asymmetric across the lipid

bilayer). We assume that there is no correlation in the
firing sequences of different centers. If the firing of the
force centers occurs with a certain random probability over
a certain time interval, then:

I(t) = I0e−t/τ (2.7)

with τ the autocorrelation time. (For ion channels the
above set of assumptions is known as the Stevens’ model).
Finally, we also assume that the force centers freely dif-
fuse inside the membrane. The area force density fa on
the membrane due to the nf active centers is then given
by:

fa(r⊥, t) =

nf∑
j=1

Fj(t)δ(r⊥ −Rj(t)) (2.8)

and has the following correlation function:

〈fa(r⊥, t)〉 = ρFa

〈f̃a(r⊥, t)f̃a(r′⊥, t
′)〉 = F 2

aGc(r⊥ − r′⊥, t− t
′)

+ I(t− t′)Gsp(r⊥ − r′⊥, t− t
′) (2.9)

where, ρ is the area density of the force centers, f̃a(r⊥, t) =
fa(r⊥, t)−〈fa(r⊥, t)〉, while Gc and Gsp are the collective
and single-particle density correlation functions of the cen-
ters respectively. The first term on the right-hand side of
equation (2.9) arises from area density fluctuations of the
force centers (concentration noise), while the second term
is due to the firing-noise of individual force centers (shot-
noise). Assuming simple diffusion for the motion of the
force centers gives:

Gc(r⊥, t) ∝
ρ

Dt
e−r2

⊥/Dt (2.10)

with D the (collective) diffusion constant of the active
centers. A similar formula applies to the single-particle
correlation function.

2.2 Membrane Langevin equation: no wall

First consider the case of a membrane in an infinite em-
bedding medium. A net force is applied to the membrane,
such that the membrane would drift along the z-direction
with a velocity V = λpρFa. We assume that this net force
is canceled by an external force and that the drift velocity
is zero. This could be for instance achieved by maintain-
ing a suitable pressure difference across the membrane.
To find the steady-state shape fluctuations, we solve the
linearized equations of motion by Fourier transformation.
Define:

u(q⊥, t) =

∫
d2r⊥ eiq⊥·r⊥u(r⊥, t). (2.11)
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After Fourier transformation of equation (2.2) and elimi-
nation of the hydrodynamic flow field, we find the follow-
ing Langevin equation for u(q⊥, t):

∂u(q⊥, t)

∂t
+ τ−1

m (q⊥)u(q⊥, t) = λp {fp(q⊥, t)

+
1

2πηλp

∫
dqz
q2

fh(q, t)ẑ + fa(q⊥, t)
}
· (2.12)

The relaxation time τm(q⊥) on the left-hand side of the
Langevin equation is given by:

τm(q⊥)−1 =

(
λp +

1

4ηq⊥

)
(γq2
⊥ + κq4

⊥). (2.13)

If γ = 0 (no tension), in the long-wavelength limit, equa-
tion (2.13) reduces to the well-known result τm(q⊥)−1 ∝
κq3
⊥/η for relaxation by hydrodynamic flow of tension-

less membranes. A cross-over to relaxation by permeation
takes place when q⊥ exceeds a value of order 1/(λpη). The
quantities fp(q⊥, t), fh(q, t), and fa(q⊥, t) on the right-
hand side of equation (2.12) are the Fourier transforms of
the three noise sources of equations (2.2) fp(r⊥, t), fh(r, t),
and fa(r⊥, t) (we used the same notations for simplicity).
Note the 1/q2 factor in the hydrodynamic noise term: the
bulk noise contribution is weighted heavily towards long
wavelengths. The Langevin equation (2.12) can be solved
straightforwardly by Fourier transformation with respect
to time and the height correlation function 〈u2(L)〉 of the
membrane can be computed using the noise-noise correla-
tion functions specified above (as was done in [8]).

2.3 Membrane Langevin equation: with wall

We now place a wall parallel to the x− y plane at a dis-
tance z = −d of the mean position of the membrane z = 0
(Fig. 1b). As before, the drift velocity is zero and the net
force per unit area ρFa applied on the membrane must
be balanced, in steady state, by a suitable external force
to which adds the repulsive wall force. A membrane near
a wall can relax either by hydrodynamic flow or by per-
meation. Relaxation by flow is a conserved process, while
relaxation by permeation is non-conserved. Consequently,
for long wavelengths (i.e. q⊥ � q∗, where q∗ will be spec-
ified later), permeation must be the dominant relaxation
mechanism — especially for small d — while for shorter
wavelengths (i.e. q⊥ � q∗), relaxation by flow must be
dominant. We give in reference [10] a full derivation of
the membrane hydrodynamics for any wavelength shorter
than Lc and discuss here only the limiting cases. We first
discuss the case of hydrodynamic relaxation.

2.3.1 Hydrodynamic relaxation (q⊥ � q∗)

In this regime, we assume that the contribution to relax-
ation by permeation is small. This does not mean that
we can simply set the permeability coefficient to zero: be-
cause the active force centers only act through a perme-
ative term in the equation of motion (see Eq. (2.12)), we

must keep that term. We distinguish between two cases:

(i) q⊥ � 1/d

For q⊥ large compared to 1/d, membrane fluctuations are
not expected to be significantly perturbed by the wall and
we can still use the Langevin equation equation (2.12).
The reason is that hydrodynamic relaxation involves flows
near the membrane which decay within a distance of or-
der 1/q⊥ of the membrane so that the presence of a wall
at a distance d should not affect the relaxation provided
q⊥ � 1/d.

(ii) 1/Lc � q⊥ � 1/d

Long-wavelength fluctuations with q⊥ � 1/d are clearly
affected by the wall. To construct a Langevin equation
in this regime, we use the lubrication approximation for
the flow in the gap between the membrane and the wall.
The lubrication approximation is used to describe flow in
thin films or flow in the gap between two plates. In the
lubrication approximation, we assume: a) that the spa-
tial variation of the flow and the hydrodynamic pressure
in the gap between the membrane and the wall is much
more rapid along the z-direction than in the x−y plane
and b) that the flow is predominantly in the x−y plane.
We also assume no-slip boundary conditions on both the
membrane and the wall.

Under these conditions and neglecting permeation, it
is easy to demonstrate that the solvent current density Q
is given by:

Q(r⊥, t) = −
1

12

(d+ u(r⊥, t))
3

η
∇⊥P (r⊥, t). (2.14)

The hydrodynamic pressure in the gap region is the sum of
the elastic pressure δFH

δu(r⊥,t)
exerted by the membrane and

of a contribution P̃ (r⊥, t) from equilibrium hydrodynamic
fluctuations:

P (r⊥, t) = −
δFH

δu(r⊥, t)
+ P̃ (r⊥, t) (2.15)

(the non-equilibrium force centers cannot contribute to
the pressure in the absence of permeation). The equation
of motion for the membrane height variable is found by
imposing conservation of solvent flow:

∂u(r⊥, t)

∂t
+∇ ·Q(r⊥, t) ≈ λpfa(r⊥, t). (2.16)

To be able to use Fourier transformation again, we must
linearize equation (2.14) assuming that |u(r⊥, t)| � d.
Linearization then leads to the following Langevin
equation:

∂u(q⊥, t)

∂t
+ τ−1

la (q⊥)u(q⊥, t) ∼=
d3q2
⊥

η
P̃ (q⊥, t)

+ λpfa(q⊥, t) (2.17)
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with

τ−1
la (q⊥) =

d3

12η
q2
⊥(γq2

⊥ + κq4
⊥) (2.18)

where τ−1
la is the membrane relaxation rate in the lubrica-

tion approximation. The q6 dependence of the relaxation
rate of a tensionless membrane in this limit has been first
derived in [11].

So far we did not specify the correlation function of
the pressure fluctuations. We determine this correlation
function in the time-honored way by requiring that the
equal time correlation function must reduce to the well-
known equilibrium result for fa = 0:

〈|u(q⊥)|2〉 =
kBT

(γq2
⊥ + κq4

⊥)
· (2.19)

This is the case only if we impose the following noise cor-
relation function:

〈P̃ (q⊥, t)〉 = 0 (2.20a)

〈P̃ (q⊥, t)P̃ (q′⊥, t
′)〉 ∼=

kBTη

d3q2
⊥

δ(q⊥ + q′⊥)δ(t− t′) (2.20b)

(we left out a numerical prefactor on the right-hand side
of Eq. (2.20b)).

The Langevin equation (2.17) is however not valid for
arbitrarily small wavevectors. We saw in Section 1 that
the collision length Lc is the lengthscale such that an
Lc by Lc patch of membrane has an RMS displacement
of order d around the mean value of the displacement
(〈u〉 = 0 in our case). This means that if, at some po-
sition r⊥ = 0, the membrane is at a distance of order d
from the wall, then we should expect to encounter a “col-
lision” of the membrane with the wall within an area of
size L2

c surrounding the point r⊥ = 0. Note again that this
is not a genuine collision, but rather a process where non-
linearities become important. On lengthscales exceeding
Lc, the linearization condition |u(r⊥, t)| � d is no longer
valid, so the Langevin equation (2.17) holds provided we
restrict to q⊥ � 1/Lc.

2.3.2 Permeative relaxation (q⊥ � q∗)

We now assume that relaxation is by permeation. It is
easy to show that in this regime the bulk relaxation rate
for permeation (see Eq. (2.13)) is still valid:

τper(q⊥)−1 ≈ λp(γq2
⊥ + κq4

⊥). (2.21)

Permeative relaxation does not require any hydrodynamic
flow so it is not influenced by the presence of the wall. The
Langevin equation of motion in this regime is:

∂u(q⊥, t)

∂t
+ λp(γq2

⊥ + κq4
⊥)u(q⊥, t) ∼= λp(fa(q⊥, t)

+ fp(q⊥, t)). (2.22)

By comparing the hydrodynamic relaxation rate
(Eq. (2.18)) with the hydrodynamic relaxation rate
(Eq. (2.21)), it is easy to show that permeative relaxation
dominates over hydrodynamic relaxation for wavevectors

q⊥ � q∗ with q∗ =

√
λpη

d3/2 .

2.4 Force rectification

To gain further insight into the nature of a collision be-
tween the membrane and a wall, and the effects of the
neglected non-linear terms, let us consider the following
model problem. Take an initially flat membrane at z = 0,
and divide it into a checker-board of “black” and “white”
patches, each of size L by L, with L large compared to d.
The black patches are subjected to a force Fb along the
−z-direction, driving the black patches towards a wall at
z = −d, while the white patches are subjected to a con-
stant force Fw along the +z-direction, driving the white
patches away from the wall (Fw and Fb play here the
role of force fluctuations on a lengthscale L). The square
patches are allowed to move individually up or down but
we demand that the average membrane position remains
the same. Let uw(t) be the displacement of the white
patches and ub(t) the displacement of the black patches.

The applied forces must overcome viscous losses due
to the fluid flow from below the black patches. According
to a well-known formula by Reynolds [12], the velocities
of the squares are related to the applied forces by:

duw

dt
∼=

(uw + d)3

ηL4
Fw

dub

dt
∼=

(ub + d)3

ηL4
Fb · (2.23)

Solvent conservation requires that solvent volume flow
from under the black patches equals the solvent volume
flow to the columns below the white patches:

dub

dt
= −

duw

dt
(2.24)

at all times t, so uw = −ub = u. The shape fluctuations
are symmetric and the average position of the membrane
remains the same. Combining equations (2.23, 2.24) gives:

Fb

Fw
=

(d+ u)3

(d− u)3
· (2.25)

The mean force exerted by the membrane along the
−z-direction is equal to (Fb−Fw)/2L2. By Newton’s Third
law, this is also the mean pressure P exerted by the wall
on the membrane. If we now make the same linearization
approximation as in the previous section and assume that
|u| � d, we find that Fb = Fw: the up/down force fluctu-
ations are symmetric so P = 0. The actual answer is:

P = Fw

(
(d+ u)3

(d− u)3
− 1

)
/2L2. (2.26)
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The effect of a wall on symmetric membrane shape fluc-
tuations is thus to produce asymmetric force fluctuation,
i.e. to rectify force fluctuations. On lengthscales L larger
than d, this leads to a net pressure on the membrane by
the wall, when u is of order d. It is these rectified force
fluctuations which are the hydrodynamic basis of the Hel-
frich force (and its non-equilibrium variants).

A very similar force rectification is at work in the
permeative regime. In that case, the pressure is osmotic
rather than hydrodynamic. Impermeable chemical species
trapped between the membrane and the wall produce a
pressure on a membrane approaching a wall because the
osmotic pressure is inversely proportional to the spacing
between the membrane and the wall by van’t Hoff’s law. It
is easy to show that a symmetric shape fluctuation again
leads to a rectified force fluctuation provided we include
non-linear terms.

It is clear from this example that we cannot hope to
compute the wall pressure from equation (2.17) alone and
that we must take the non-linear rectification effect into
account. Instead of solving a set of non-linear hydrody-
namics, we develop a scaling procedure, outlined in the
next section, to account for non-equilibrium membrane
fluctuations and the resulting wall pressure.

3 Scaling method

3.1 Height correlation functions (no wall)

We start by noting that there are two relaxation mecha-
nisms playing a different role. A deformed membrane re-
laxes either by permeation or by hydrodynamic flow (with
relaxation rates given by Eq. (2.13) or Eq. (2.18)). Accord-
ing to equation (2.9), the force due to the centers relaxes
either through intrinsic individual relaxation of a center
characterized by the autocorrelation time τ (as described
by Eq. (2.7)) or by their number density fluctuation char-
acterized by the diffusion time L2/D (see Eq. (2.10)).
Our approach consists in identifying the dominant relax-
ation mechanism and the dominant source of force fluc-
tuation for a given range of lengthscales L � b (with b a
short-distance cut-off), while absorbing force fluctuations
at shorter length scales into the force amplitude F (b).

To implement this strategy, divide a patch of mem-
brane of size L by L into Ns(L) = (L/b)2 small squares of
size b by b (with b� L). We number the small squares by
j = 1, 2, ..., Ns. Next, let Fj(t) describe the time-dependent
force fluctuations on the j’th small square (Fj(t) may de-
scribe equilibrium thermal fluctuations or active forces).
Let τf(b) be the autocorrelation time and F (b) the magni-
tude of these force fluctuations. The origin of shape fluc-
tuations of the membrane lies in the statistical imbalance
of the sum of the force fluctuations Fj(t) over the Ns(L)
small squares integrated over the relaxation time τm(L)
of the membrane at the scale L of the patch. There are
of order Nτ (L) = τm(L)/τf(b) “firing events” suffered by
an individual small square over the life-time of the shape
fluctuation. The statistical imbalance of the force fluctua-
tions on one small square is thus of order ±F (b)Nτ (L)1/2

(according to the central-limit theorem), with a random
sign for each small square. If there are no correlations
between the force fluctuations on different squares, then
the statistical imbalance F (L) of the force on the L by L
patch is

F (L) ∝ ±F (b)
√
Ns(L)Nτ (L) (3.1)

by the same argument.
A similar sequence of arguments applies to the aver-

age displacement of the membrane. Let uj(t) describe the
displacement of the j’th small square and let ±u(b) be the
displacement suffered in response to an individual firing
event. The final displacement uj of the j’th small square
over the life-time τm(L) of the shape fluctuation is then
of order ±Nτ(L)1/2u(b). The mean displacement u(L) of
the L by L patch of membrane is the average of the Ns(L)
displacements of individual small squares. If there is no
spatial correlation between the displacements of the small
squares, then

u(L) ∝ ±u(b)
√
Nτ (L)/Ns(L). (3.2)

We have in equations (3.1, 3.2) a set of scaling “laws”
for the displacement and force provided we can identify
the appropriate force amplitude F (b) and displacement
amplitude u(b).

To establish the validity range of equations (3.1, 3.2),
we first note that if the membrane displacement obeys
over a range of length scales L� b a linearized Langevin
equation is of the form:

∂u(q⊥, t)

∂t
+ τ−1

m (q⊥)u(q⊥, t) ∝ f(q⊥, t) (3.3)

with f(r⊥, t) a random force having a spatial coherence
length b, an autocorrelation time τf(b), and an amplitude
F (b), then equations (3.1, 3.2) follow provided τf(b) �
τm(L). If the force autocorrelation time τf(b) exceeds the
membrane relaxation time τm(L), then we must set
Nτ (L) = 1 in equations (3.1, 3.2). Next, since equations
(3.1, 3.2) implicitly assume a linearized Langevin equa-
tion we cannot extend L beyond the collision length Lc

since we know from last section that the linearized equa-
tion of motion is not valid if the membrane is close to a
wall. Also recall from the previous section that a wall has
a “rectifying” effect on force fluctuations: they no longer
have a random sign. Finally, if the forces exerted on the
membrane are mediated by hydrodynamic coupling, then
long-range spatial correlation are introduced between the
force fluctuations. We will address these various cases in-
dividually below. If all of the above validity conditions are
satisfied, then it follows from equation (3.2) that the mean
square 〈u2(L)〉 of membrane height fluctuations obeys:

〈u2(L)〉 ∝

(
b

L

)2

Nτ (L)u(b)2 (uncorrelated). (3.4)

It follows from equation (2.13) that for lengthscales
L < λpη, relaxation is by permeation while for L > λpη,
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relaxation is by hydrodynamic relaxation. For lengthscales
L larger than λpη, the equilibrium force fluctuations ex-
perienced by the membrane are due to fluctuations in the
bulk of the solvent rather than the surface force fluctua-
tions of permeative transport. These bulk fluctuations are
transferred to the membrane via hydrodynamic interac-
tions. The scaling relation equation (3.4) has to be cor-
rected for L > λpη since the hydrodynamics introduces
long-range correlations between force fluctuations exerted
on different parts of the patch. To find this new scaling
relation, we now use b = λpη as the small distance cut-
off. Divide a three-dimensional block of solvent of volume
L3 surrounding the L by L membrane patch into (L/b)3

small cubes of volume b3. The solvent in each cube expe-
riences force fluctuations, which are assumed to be uncor-
related (for the case of equilibrium hydrodynamic fluctu-
ations this is indeed the case, see Eq. (2.4)). In Appendix
A, we show that the height correlation function for the
case of hydrodynamic fluctuations is:

〈u2(L)〉 ∝

(
b

L

)
Nτ (L)u(b)2 (correlated). (3.5)

In Appendix B, we show that if we apply equations (3.4,
3.5) to calculate 〈u2(L)〉 for a membrane with no active
force centers in an infinite embedding medium (i.e. with-
out wall) then we reproduce the equilibrium result equa-
tion (1.4) both in the permeative and in the hydrodynamic
regime.

We next apply the method to the case of active force
centers. For convenience, we simply “switch-off” the ther-
mal fluctuations and only include the active firing events.

3.1.1 Shot-noise

For a homogeneous collection of force centers with no
diffusion, the force fluctuations are spatially and tempo-
rally uncorrelated. The autocorrelation time of shot-noise
is τf(b) = τ . In this case, we can directly apply equa-
tion (3.4) with Nτ (L) = τm(L)/τ . Note that Nτ (L) is
large compared to one for large L. The amplitude F (b) of

force fluctuations can be equated to I
1/2
0 in equation (2.7)

setting b equal to ρ−1/2, the mean spacing between force
centers. The step length u(b) is found from the Langevin
equation:

∂u(q⊥, t)

∂t
+ τ−1

m (q⊥)u(q⊥, t) = λpfa(q⊥, t). (3.6)

For short force autocorrelation times τ � τm, we can ne-
glect the relaxational term on the left-hand side of equa-
tion (3.6). The step length is then:

u(b) ≈ λpτρI
1/2
0 (3.7)

and the height correlation function:

〈u2(L)〉 ∝
ρτλpI0(

1 + L
λpη

)
(γ + κL−2)

(shot-noise). (3.8)

Note that for L large compared to λpη the effect of shot-
noise decreases with patch size L as 1/L (λpη is the cross-
over length between hydrodynamic and permeative relax-
ation). Comparing this result with the equilibrium corre-
lation function at finite tension (Eq. (1.4)), we see that
the effect of shot-noise on the height correlation function
of bulk membranes is weak in the large L limit.

3.1.2 Concentration fluctuations

A force fluctuation on a scale L can also be due to a con-
centration fluctuation of the force centers rather than to
fluctuations in the output of individual centers. An excess
or deficit of force centers on a membrane patch leads to a
force fluctuation on the patch, provided the force centers
apply a finite mean force Fa (see Eq. (2.9)). This is anal-
ogous to the case of hydrodynamic fluctuations, since the
force is uniformly applied over the L by L patch. In other
words, b ≡ L. Since the force fluctuations are now coher-
ent, we apply equation (3.5) with Nτ (L) = τm(L)/τf(L)
where τf(L) ≈ L2/D is the autocorrelation time of con-
centration fluctuations. Large scale concentration fluctua-
tions apply a net force which varies only slowly with time.
Following the same steps as for the shot-noise case, we
find

〈u2(L)〉 ∝
ηλ2

pF
2
a ρ

Dκ
L3 (tensionless) (3.9)

for tensionless membranes. Comparing with equation (1.4),
we see that the height correlation function of an active
membrane diverges more strongly with patch size L than
an equilibrium tensionless membrane. For a tense mem-
brane on the other hand, we must pay attention to the
inequality τf(L)� τm(L); we obtain:

〈u2(L)〉 ∝
η2λ2

pF
2
a ρ

γ2
(tense) (3.10)

which, like for tense membranes in equilibrium, is indepen-
dent of L. Comparing this with the equilibrium correlation
function (Eq. (1.4)), we see that the introduction of mo-
bile force centers in tense membranes can be qualitatively
described through the introduction of an effective noise
temperature given by:

kBTnoise ≈
η2λ2

pF
2
a ρ

γ
(3.11)

(recall though that our method cannot be expected to ac-
count for any logarithmic dependency in correlation func-
tions). The results for the correlation function of active
membranes derived in this section all can be confirmed
by direct solution of the Langevin equation of motion of
Section 2 as shown in [8].

3.2 Wall pressure

As discussed in Section 2.4, in the presence of a wall,
the downwards force on the membrane in the sections of
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the membrane closer to the wall must be larger than the
upwards force in the sections of the membrane further
from the wall (the rectification effect). The same holds
for the pressure variation in the layer of fluid between the
membrane and the wall so there is an overall net pressure
exerted by the wall on the membrane. On the one hand,
rectification does not play any role for modulations with
wavelengths smaller than d, since the hydrodynamic flow
pattern in the vicinity of the membrane with a modula-
tion wave-vector q decays as exp(−qz). On the other hand,
modulations with wavelengths large compared to the col-
lision length Lc mentioned in Section 1 are suppressed by
the presence of the wall. In a dynamical description of
the wall pressure, we must thus focus on rectified force
fluctuations with wavelengths in a range of length scales
between d and Lc: Lc � L� d.

As is evident from equation (2.26), the largest pressure
is exerted by those modulations which have an amplitude
u comparable to d, i.e. by modulations with wavelengths
of order the collision length Lc. In our scaling procedure,
we thus should take patches of size Lc by Lc and use the
mean membrane wall spacing d as a short distance cut-off.

First consider the case of incoherent force fluctuations.
Let F (d) be the amplitude of a rectified force fluctuation
on a small square of size d by d, with Ns(Lc) = (Lc/d)2

squares per Lc by Lc patch. Next, let Nτ (Lc) be the
number of force fluctuations applied over the repeat time
τc(Lc) of the membrane-wall collisions of the patch. Note
that an upper bound on τc(Lc) is given by τm(Lc), the
linear-response lifetime of a modulation of wavelength Lc.
If τf(d) is the force autocorrelation time of the force fluc-
tuation F (d), then Nτ (Lc) = τc(Lc)/τf(d) if τf(d) is less
than τc(Lc), while Nτ (Lc) = 1 if τf(d) exceeds τc(Lc).

The contribution to the pressure on an Lc by Lc patch
of membrane during a force fluctuation of a d by d small
square is F (d)/L2

c . The RMS of the pressure fluctuations
summed over the small squares and averaged over the “ob-
servation period” τc(Lc) would be ±(Ns(Lc)/Nτ (Lc))

1/2

times this quantity. For perfectly symmetric force fluctua-
tions, the average pressure 〈P (d)〉 would vanish. Rectifica-
tion is now included by simply removing the fluctuations
which have the “minus” sign. The average pressure can
then be estimated as:

〈P (d)〉 ∝

√
Ns(Lc)

Nτ (Ls)

F (d)

L2
c

(uncorrelated). (3.12)

Just as for the height correlation function in Section 3.1,
we must derive a separate expression for the wall pressure
in the case of coherent force fluctuations. Assume that the
force F (t) is applied uniformly over the patch size Lc with
an autocorrelation time τf(Lc) and fluctuations amplitude
F (Lc). The time-averaged pressure over one “observation
period” τc(Lc) is then:

P ∝
1

L2
cτc(Lc)

∫
τc(Lc)

F (t)dt. (3.13)

Using 〈P (d)〉 ≈ 〈P 2〉1/2, we find:

〈P (d)〉 ∝

√
τf(Lc)

τc(Lc)

(
F (Lc)

L2
c

)
(3.14)

or, with Nτ (Lc) = τc(Lc)/τf(Lc):

〈P (d)〉 ∝

√
1

Nτ (Lc)

(
F (Lc)

L2
c

)
(correlated). (3.15)

Note that taking d = Lc in equation (3.12) directly leads
to equation (3.13). As discussed previously, if τf(Lc) ex-

ceeds τc(Lc) we setNτ (Lc)=1, and then 〈P (d)〉∝
(
F (Lc)
L2

c

)
.

For equilibrium thermal fluctuations, equations (3.12,
3.13) can be shown to reproduce the equilibrium result
equations (1.1, 1.2) (see Appendix C). In the next sec-
tion, we use equations (3.12, 3.13) to compute the non-
equilibrium wall pressure.

4 Wall-induced fluctuation magnification and
wall-induced pressure

4.1 Height correlation function (with wall)

We now return to the geometry discussed in Section 2.3 of
a membrane in the vicinity of a wall. The mean position of
the membrane is at z = 0 while the wall is at z = −d. We
first compute the collision length, i.e. the mean spacing
between membrane-wall contacts. The collision length is
found from the condition 〈u2(Lc)〉 ≈ d2. For membranes in
thermal equilibrium, it is sufficient to use for 〈u2(L)〉 the
equilibrium height correlation function computed in the
absence of wall. It would seem natural to adopt the same
procedure for active membranes and use the height cor-
relation functions computed in the previous section. This
immediately would imply that tense membranes carrying
active centers with either shot-noise or concentration fluc-
tuations have a collision length which could be infinite
for large enough d, since in neither case the height cor-
relation function diverges with L (see Eqs. (3.8, 3.10)).
The collision length also could be exponentially large in-
stead of infinite, as in equation (1.5), due to neglect of a
logarithmic dependence on L in equation (3.15). In both
cases, tense membranes would only suffer a short-ranged
repulsion from a wall. It is a key point of this paper that
this naive estimate greatly underestimates the true wall
force: the collision length of active membranes is much
shorter than that of equilibrium membranes. The presence
of a wall greatly magnifies the height fluctuations of a non-
equilibrium membrane.

Demonstrating this claim simply involves replacing the
bulk membrane relaxation time (Eq. (2.13)) in the calcu-
lation which led to equations (3.8-3.10) by the relaxation
time (Eq. (2.18)) of a membrane near a wall. We first re-
turn to the Langevin equation of a membrane near a wall
in the lubrication approximation (see Eq. (2.17)):

∂u(q⊥, t)

∂t
+ τ−1

m (q⊥)u(q⊥, t) ∼= λpfa(q⊥, t) (4.1)
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where thermal fluctuations have been neglected. The mem-
brane relaxation time τm is given by equation (2.18) for
hydrodynamic relaxation and by equation (2.21) for per-
meative relaxation:

τ−1
m (q⊥) ∼=


τ−1
la (q⊥) =

d3

12η
q4
⊥(γ + κq2

⊥)

τ−1
per(q⊥) = λp(γq2

⊥ + κq4
⊥).

(4.2)

For the lubrication approximation to be valid, wavevectors
q⊥ must be small compared to 1/d.

It follows from equation (4.2) that relaxation is per-
meative over large length scales (q⊥ � q∗) and hydrody-
namic over shorter length scales (q⊥ � q∗). The cross-

over wavevector is q∗(d) =

√
λpη

d3/2 ∝ 1
L∗(d) . Since for a

membrane fluctuating in bulk without wall, hydrodynamic
relaxation dominates for small q, i.e. length scales large
compared to λpη, this statement may look surprising. It
is a simple consequence of the fact that the motion of an
impermeable membrane close to a wall requires transport
of fluid over large length scales in the thin layer between
the membrane and the wall, which is a very slow process.

For length scales where permeative relaxation domi-
nates (L� L∗(d)), we can still use the height correlation
functions computed in Section 3 in the absence of wall
(Eqs. (3.8-3.10)), since no dependence on d remains in
equation (4.1) in the permeative regime. Using the bulk
correlation function in 〈u2(Lc)〉 ≈ d2 gives the correct col-
lision length. For length scales where hydrodynamic relax-
ation dominates (L � L∗(d)), we have to recalculate the
collision length.

4.1.1 Hydrodynamic relaxation: shot-noise

Assume that we are in the hydrodynamic regime with
q > q∗(d). Consistency thus requires the collision length
to be less than 1/q∗(d) in this regime. For shot-noise, the
autocorrelation time τf = τ of the force fluctuations does
not depend on L. For large L, the membrane relaxation
time — which grows as a powerlaw with L (see Eq. (4.2))
— is large compared to τ so we can neglect the relax-
ational term in equation (4.1) with respect to ∂u/∂t. Re-
peating the arguments which lead to equation (3.8) and
using the method of Appendix B, it easily follows from
equation (4.1) that for an L by L patch of membrane, the
mean square displacement over a time t is:

〈u2(L, t)〉 ∝

(
τλ2

pI0ρ

L2

)
t. (4.3)

The steady-state height-correlation function is found from
equation (4.3) by replacing t with the life-time τm(L) of
the height fluctuation at the scale L. Using equation (4.2)
gives:

〈u2(L)〉 ∝

(
ητλ2

pI0ρ

d3(γL2 + κ)

)
L4 (4.4)

for L large compared to d, but small compared to L∗(d) =
d3/2
√
λpη

(L∗(d) � L � d). If we compare this result with

equation (3.8) for shot-noise driven bulk fluctuations, we
see that the effect of the nearby wall is indeed to magnify
the height fluctuations. The height correlation function of
tense membranes diverges with patch size as L2, whereas
according to equation (3.8) it actually was expected to de-
crease with L as 1/L. The magnification factor is of order
(L/d)3 for both tense and tensionless membranes. This
fluctuation magnification is due to the reduced relaxation
rate of a membrane near a wall as compared to a mem-
brane in bulk, while the non-equilibrium force fluctuations
themselves are not directly affected by the wall. The effect
is entirely due to the non-equilibrium nature of the force
centers. It does not occur for equilibrium membranes since
for equilibrium membranes, reduced relaxation rates nec-
essarily would go hand in hand with reduced noise levels
through the fluctuation-dissipation theorem. Note finally

that according to equation (4.4), 〈u2(d)〉 ∝
(

ητλ2
pI0ρ

d(γ+κd−2)

)
,

which is consistent with equation (3.8) for L = d.
We now use the steady-state correlation function equa-

tion (4.4) to compute the collision length Lc(d) using
〈u2(Lc)〉 ≈ d2 in the same way as for equilibrium fluc-
tuations. The result is:

Lc(d) ≈



√
γ

ητλ2
pI0ρ

d5/2 (tense)

(
κ

ητλ2
pI0ρ

)1/4

d5/4 (tensionless).

(4.5)

Consistency first requires Lc(d) to be less than L∗(d) =
d3/2
√
λpη

. For tensionless membranes, this is always the case

provided d is large enough, explicitly d� κη
τI0ρ

. For tense

membranes, there is a cross-over length given by

dco ≈
√

τλpρI0
γ : if d � dco permeative relaxation domi-

nates. In the permeative regime, there is no wall-induced
increase in the lifetime of fluctuations. We thus expect
wall-induced forces on tense membranes with shot-noise
to have a finite range equal to dco.

There is a second self-consistency condition namely
Lc(d) must be large compared to d. If this condition is
not satisfied, then membrane collisions are taking place
for lengthscales shorter than the short-distance cut-off d
required by the lubrication approximation. As can be seen
from equation (4.5), for large d this condition is also sat-
isfied.

4.1.2 Hydrodynamic relaxation: concentration fluctuations

(i) Tense membranes

In the case of force fluctuations produced by concentration
fluctuations of mobile force centers, the force autocorrela-
tion time τf(L) ≈ L2/D is scale dependent. If we compare
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τf(L) with the hydrodynamic lifetime τm(L) ∝ η
γd3L

4 of

the shape fluctuation of a tense membrane (see Eq. (4.2)),

then τm exceeds τf provided L � L̃ ∝
√

γd3

ηD
. Recall now

that consistency requires L∗ = d3/2
√
λpη
� L in the hydro-

dynamic regime. As long as the hydrodynamic regime is
valid, we must have L∗ � L̃, i.e. 1� γλp/D. For reason-
able values of γ, D and λp (see estimates given in Sect. 5),
γλp/D is large compared to one. This means that as long
as we stay in the regime of hydrodynamic relaxation, the
force autocorrelation time always exceeds the lifetime of
shape fluctuations. A force fluctuation is thus “turned-on”
continuously over the fluctuation lifetime which allows us:
i) to neglect ∂u/∂t in equation (4.1) with respect to the
relaxational term and ii) to set Nτ = 1.

The height correlation function is again computed from
equation (4.1) by repeating the steps which led to equa-
tion (3.10):

〈u2(L)〉 ∝

(
η2λ2

pF
2
a ρ

γ2

)(
L

d

)6

(tense) (4.6)

where we still assume that L is large compared to d, but
small compared to L∗(d) (L∗(d)� L� d). Just as for the
shot-noise case, when compared to equation (3.10), there
is a fluctuation-magnification effect now proportional to
(L/d)6. It is easy to check that around L = d, the required
cross-over to equation (3.10) is indeed obtained.

The corresponding collision length is:

Lc(d) ∝

(
γ

ηλpFa
√
ρ

)1/3

d4/3. (4.7)

Consistency requires again that Lc(d) must be larger than

d but less than the cross-over length L∗(d) = d3/2
√
λpη

(L∗(d)� Lc(d)� d) beyond which permeative relaxation

takes over. This is the case if d � dco with dco ≈
λpηγ

2

ρF 2
a

the cross-over length, while 〈u2(d)〉 ≤ d2 for large d. If
d� dco, the system crosses over to the permeative regime.

(ii) Tensionless membranes

For tensionless membranes, the fluctuation lifetime
τm(L) ∝ η

κd3L
6 exceeds the force autocorrelation time

τf(L) ≈ L2/D provided L exceeds L̃ ∝
(
κd3

ηD

)1/4

. If L > L̃,

we can neglect the relaxational term in equation (4.1) with
respect to ∂u/∂t. Solving equation (4.1) and using the
method which led to equation (4.3) gives the mean square
displacement for an L by L patch of membrane over a
time t:

〈u2(L, t)〉 ∝

(
τf(L)λ2

pρF
2
a

L2

)
t. (4.8)

Thermal
Noise

3.a   No Wall 3.b   With Wall

Active 
Noise

d

d

magnification 
       effect

Fig. 3. Illustration of the wall influence on the fluctuations of
a membrane under tension: a) thermal noise: the influence is
negligible, b) active noise: the presence of the wall leads to an
amplitude comparable to d, the average distance to the wall.

The steady-state height correlation function is found by
setting t equal to the fluctuation life-time:

〈u2(L)〉 ∝

(
ηλ2

pρF
2
a

Dκd3

)
L6 (tensionless). (4.9)

Compared with the bulk height correlation function (see
Eq. (3.9)), the fluctuation magnification factor is of the
order (L/d)3. The cross-over to L = d is again correct.
The corresponding collision length is:

Lc ∝

(
κd5D

ηλ2
pρF

2
a

)1/6

· (4.10)

Consistency requires Lc(d) > L̃ and again L∗(d)� Lc(d)
� d. For large d, the collision length is large compared to

L̃ ∝
(
κd3

ηD

)1/4

so the fluctuation life-time indeed exceeds

the force autocorrelation time, while it is small compared

to the cross-over length L∗(d) = d3/2
√
λpη

. Unfortunately,

since Lc(d) increases with d as d5/6, Lc(d) is less than d
in the large d limit indicating failure of the lubrication
approximation. We will not address this question in this
paper, and simply assume that d is large enough for the
first two conditions to be satisfied, while Lc(d) still exceeds
d, i.e. d� dco with dco = κD

ηλ2
pρF

2
a

.

4.2 Wall force

Having demonstrated the fluctuation magnification effect
(Fig. 3), it is now straightforward to compute the wall
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force using equation (3.12) in the case of shot-noise
(uncorrelated force fluctuations) and equation (3.13) in
the case of concentration fluctuations (correlated force
fluctuations). We identify the repeat time τc(Lc) of the
membrane-wall collisions of the patch with the life-time
τm(Lc) of the membrane height fluctuation as given by
equation (2.18) with L = Lc.

4.2.1 Shot-noise

The amplitude F (d) of force fluctuations on a scale d is of

order I
1/2
0

√
ρd2 while Ns(Lc) = (Lc/d)2. For membranes

exposed to shot-noise, equation (3.12) then leads to:

〈P (d)〉 ∝

√
ρ

τm(Lc)/τ

I
1/2
0

Lc
· (4.11)

i) Tense membrane

For tense membranes, the fluctuation life-time is
τm(Lc) = ηL4

c/γd
3 while the collision length is given by

equation (4.5):

〈P (d)〉 ∝


τ2ηλ3

pρ
2I2

0

γd6
d� dco =

√
τλpρI0

γ

0 d� dco

(tense).

(4.12)

If we compare equation (4.12) with equation (1.2) for
the wall force due to thermal fluctuations, we see that
shot-noise dominates over thermal noise provided
τλpρI0 � kBT .

ii) Tensionless membrane

For tensionless membranes τm(L) ∝ ηL6/κd3. The result-
ing wall force is:

〈P (d)〉 ∝
η1/2(τρ)3/2λ2

pI
3/2
0

κ1/2d7/2
if d�

κη

τI0ρ
(tensionless).

(4.13)

If we compare equation (4.13) with equation (1.1), then we
see that in the large d limit the wall force due to shot-noise
decays with a power law d−7/2 which is close to that of the
Helfrich force (d−3), but thermal fluctuations dominate in
the large d limit.

4.2.2 Concentration fluctuations

i) Tense membrane

For tense membranes exposed to long-wavelength concen-
tration fluctuations of force centers, the number Nτ of

force fluctuations applied over a fluctuation lifetime must
be set equal to one (as discussed above for Eq. (4.6)). Ac-
cording to equation (3.13), and using F (Lc) = ρ1/2FaLc

for the amplitude of the force due to concentration fluctu-
ations, the wall force is then inversely proportional to the
collision length:

〈P (d)〉 ∝
ρ1/2Fa

Lc
· (4.14)

From equations (4.7, 4.14) we then find:

〈P (d)〉 ∝
F

4/3
a ρ2/3(ηλp)1/3

γ1/3d4/3
d� dco =

λpηγ
2

ρF 2
a

(tense).

(4.15)

The non-equilibrium contribution to the wall force due
to concentration fluctuation on a tense membrane thus
dominates over the thermal contribution (Eq. (1.2)) in
the large d limit.

ii) Tensionless membrane

For a tensionless membrane, the collision time does not ex-
ceed the fluctuation lifetime in the large d limit. According
to equation (3.13), equation (4.14) must be replaced by:

〈P (d)〉 ∝

√
L2

c

τm(Lc)D

Faρ
1/2

Lc
(4.16)

with τm(L) ∝ ηL6/κd3. Using equation (4.10) in equa-
tion (4.16) gives an extraordinarily long-ranged wall re-
pulsion:

〈P (d)〉 ∝
λpF

2
a ρ

Dd
d� dco =

κD

ηλ2
pρF

2
a

(tensionless).

(4.17)

This wall force again would overwhelm the thermal repul-
sion in the large d limit. However, it should be recalled
that for this case our method fails for d� κD

ηλ2
pρF

2
a

due to

failure of the lubrication approximation.

4.2.3 Results

We can rewrite these results in the form of equation (1.6),
namely:

P (d) ∝ P0

(
δ

d

)α
with P0 = Fa/l

2 the local pressure in the case of concen-

tration fluctuations, P0 = I
1/2
0 /l2 in the case of shot-noise
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and:

Tense Tensionless

α = 6, α = 7/2,

Shot-noise

δ=

(
bδ1(τλpI

1/2
0 )2

l2

)1/6

δ=

(
b(τλpI

1/2
0 )3

l2δκ

)1/7

Concentration

α=4/3, δ=(l2δab)
1/4 α=1, δ=

λpFa

D

Fluctuations

where l is the spacing between active centers defined by
ρ = 1/l2, b = λpη is the cross-over length between per-
meative and hydrodynamic relaxation in the absence of

wall (see Eq. (2.13)), δa = Fa/γ, δI = I
1/2
0 /γ, δκ = κ/I

1/2
0

are three length scales mixing quantities associated either
with the active centers or with the membrane. Note also
that λpFa and λpI

1/2
0 are the volume of solvent trans-

ferred through the membrane per unit time and per force
center due to the averaged activity of the centers and to
shot-noise respectively.

5 Orders of magnitude and concluding
remarks

According to our scaling arguments, membrane fluctua-
tions of non thermal origin are strongly enhanced in the
presence of a wall. With the only exception of a tense
membrane in the hydrodynamic regime responding to shot-
noise, the fluctuations amplitude becomes comparable to
the average distance to the wall, even though it would
be much smaller under the same conditions in an infinite
medium. This enhancement is due to the increase in the
membrane response time at large enough scale. This ef-
fect cannot show up when only thermal sources are at
work: equal time correlation functions cannot depend on
hydrodynamic parameters. Thermal noise sources depend
on boundary conditions in such a way that any dynamic
information must disappear in the equal time correlation
functions. “Chemical” or “biological” noise which is purely
local can, on the contrary, take full advantage of the con-
siderable increase in the membrane response time: the “in-
formation” conveyed by hydrodynamic boundary condi-
tions can be “processed” by the membrane which should
respond in a spectacular way according to the present the-
ory. If the membrane is adhesive, bonding is facilitated. If
it is not, a long range repulsive pressure is generated even
for a tense membrane in conditions under which the Hel-
frich entropic force would be entirely negligible. This pres-
sure could easily supersede other long-range forces such as
van der Waals forces.

In order to estimate the order of magnitude of the
non-equilibrium pressure, let us consider a collection of
ion channels separated from each other on average by a

distance l = ρ−1/2 = 10 nm. We can estimate the aver-
age force the following way: in a typical channel, bursts
of 103 to 104 ions can flow in about 10−3 s. This means
that a single ion velocity is of the order of the membrane
thickness (i.e. about 5 nm) divided by the transit time
of a single ion (i.e. 10−7 s). The drag of the ion on the
membrane is roughly speaking given by Stokes’s force,
in which the relevant viscosity is the membrane viscos-
ity and the relevant length is the ion radius. The average
force Fa must be multiplied by the duty ratio which is
of the order of 0.1. We find Fa ≈ 10−6−10−7 dyne (or
1-10 pN). With these values, we can estimate the distance
d0 beyond which the non-equilibrium repulsive pressure
wins over the van der Waals attractive force per unit area
FvdW ∝ A

d3
(

1+ d2

w2

) , where w ≈ 5 nm is the membrane

thickness and A is the Hamaker constant “of the order of
kBT ”. We find d0 ≤ w for values of the membrane tension
all the way up to 1 dyn/cm (we assume λp ≈ 10−5 cm2 s/g
and D ≈ 10−9 cm2/s). A more accurate estimate of d0

would require the knowledge of various prefactors, but one
clearly sees that the pressure due to the channels activ-
ity is in general very large and wins over van der Waals
very quickly, i.e. on microscopic scales. Similar estimates
easily show that non-equilibrium wall forces are qualita-
tively competitive with (and in most regimes exceed) the
entropic equilibrium Helfrich force. These effects should
be easily observable experimentally.

The predictions we put forward in this article can be
generalized in several ways. First, the collective concentra-
tion fluctuations of proteins on membranes do not need to
be exactly diffusive. In many cases, they seem to be hypod-
iffusive, and on general grounds, one cannot rule out the
possibility of hyperdiffusive behavior. The method we have
developed in this article can be used straightforwardly:
one finds that hypodiffusive behavior increases the fluctu-
ations as compared to purely diffusive behavior whereas
hyperdiffusive behavior decreases them. One could also
consider tethered or crystalline membranes. In principle,
these problems are more complex, but since most of our re-
sults are obtained for membrane under tension, they hold
for the above mentioned cases as well. Last, we have as-
sumed that the collective concentration fluctuations do
not depend on the membrane configuration (e.g. curva-
ture). In general, this is only an approximation: the more
complex case will be discussed elsewhere [13].

This work was initiated during a stay of one of us (R.B.) as a
Rothschild laureate at the Curie Institute. Illuminating discus-
sions with F. Brochard, E. Evans, P.-L. Hansen, F. Jülicher,
S. Ramaswamy and J. Toner are also gratefully acknowledged.

Appendix A: Hydrodynamic force fluctuations

In this Appendix, we compute the general form of the
membrane height correlation function when hydrodynamic
fluctuations dominate. Let F (b) be the amplitude of the
random force exerted on the solvent of a given small cube.
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The force fluctuation on a small cube creates a flow veloc-
ity fluctuation of amplitude v(b). According to the Stokes
formula, a fluid drop of size b (and arbitrary shape), which
experiences a force F (b), moves with a velocity

v(b) ∝ F (b)/ηb. (A.1)

The velocity field surrounding the moving drop (“Stokes-
let”) decays as 1/r with r the distance from the drop,
while the pressure field decays as 1/r2. If the small cube
is located at a distance of order L from the membrane,
then the pressure δP applied to the membrane due to the
force pulse F (b) in the small cube varies smoothly along
the membrane and is of the order of

δP (L) ∝ F (b)/L2. (A.2)

If the membrane is again divided into small squares of area
b by b, then all small squares move coherently at a distance
uc(L) in response to a force pulse. This corresponds to a
local displacement u(b) such that:

uc(L) ≈

(
b

L

)2

u(b) (A.3)

with u(b) — proportional to F (b) — to be determined
below. The total number N of such force pulses is the
number (L/b)3 of small cubes times the number Nτ (L) =
τm(L)/τf(b) of force pulses per cube. The final mean dis-

placement u(L) of the L by L patch is equal to
√
Nuc(L)

or,

u(L) ∝ ±u(b)

√(
b

L

)
Nτ (L). (A.4)

From equation (A.4), we finally obtain equation (3.5) given
in the text:

〈u2(L)〉 ∝

(
b

L

)
Nτ (L)u(b)2. (A.5)

Appendix B: Height correlation function
of an equilibrium membrane

In this Appendix, we use the scaling relations equations
(3.4, 3.5) to compute the height correlation function of an
equilibrium membrane (i.e. with no active center), in an
infinite embedding medium (i.e. without wall).

B.1. Permeative regime

We first consider fluctuations on lengthscales λpη�L�a
where permeation dominates (the existence of this regime
is not guaranteed but the discussion is of pedagogical in-
terest). Here, a is the microscopic cut-off of continuum the-
ory (i.e. of the order of the size of the largest membrane-

associated molecule). In this regime, the membrane relax-
ation rate is

τm(L)−1 = λp(γL−2 + κL−4) (B.1)

according to equation (2.13). The size b of our small squa-
res is now equal to the molecular cut-off a.

We compute the force amplitude F (a) of thermal fluc-
tuations at a lengthscale a by integrating the thermal fluc-
tuation force per unit area fp(r⊥, t) in equation (2.2a)
over each a by a small square and average it over a time
τm(a). We are thus identifying the force autocorrelation
time τf(a) with the membrane relaxation time τm(b) with
b = a. Thermal fluctuations are uncorrelated in space and
time (see Eq. (2.3)). However, since a small square can-
not respond to the applied random forces over time scales
shorter than τm(a), we must average the random forces
over τm(a), so that τf(a) must be of the order of τm(a).
The force Fj on the j’th square is now:

Fj ∝
1

τm(a)

∫
τm(a)

dt

∫
a2

d2r⊥fp(r⊥, t). (B.2)

The amplitude F (a) of the force fluctuations is F (a) ∝√
〈F 2
j 〉:

F (a)2 ∝
a2

τm(a)

∫
τm(a)

dt

∫
a2

d2r⊥〈fp(r⊥, t)fp(0, 0)〉. (B.3)

Using equation (2.3b) in equation (B.3) yields the force
amplitude for thermal fluctuations in the permeative reg-
ime at a lengthscale of order a:

F (a) ∝ a

√
kBT

λpτm(a)
· (B.4)

We now calculate the displacement amplitude u(a) of the
small squares in response to a force fluctuation. The auto-
correlation time τf(a) of force fluctuations at a lengthscale
a is of the order of the membrane relaxation time τf(a) so
the first and second term of the Langevin equation (3.2)
for q of the order of 1/a are of comparable magnitude. It
follows that

τ−1
m (a)u(a) ≈ λp

(
F (a)

a2

)
· (B.5)

Combining equations (B.4, B.5) gives the desired displace-
ment amplitude:

u(a) ∝ a−1
√

(λpτm(a)kBT ). (B.6)

This displacement amplitude is small. For a tensionless
membrane for instance, u(a) ≈ a

√
kBT/κ which is of the

order of the microscopic cut-off. Inserting equation (B.6)
into equation (3.4) with Nτ (L) = τm(L)/τm(a) and us-
ing equation (B.1) gives the height correlation function of
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a free membrane with no active centers in the permeative
regime:

〈u2(L)〉 ∝


kBT

κ
γ = 0

kBT

γ
γ 6= 0.

(B.7)

The dependence on the membrane permeability λp and
the microscopic cut-off a drop out. We reproduce the
known equilibrium correlation function equation (1.4) up
to the logarithmic factor for the γ 6= 0 case, which was to
be expected in view of the nature of our procedure.

B.2. Hydrodynamic regime

We next consider fluctuations on lengthscales λpη � L
where hydrodynamics dominates. The short distance cut-
off is now b = λpη. The membrane relaxation rate is:

τm(L)−1 =
1

4η
(γL−1 + κL−3). (B.8)

To find the force amplitude F (b), we average the hy-
drodynamic force density fh(r, t) over the relaxation time
of the membrane τm(b) of a b by b small square and inte-
grate it over a small cube of size b3. We equate — as before
— the force autocorrelation time τf(b) with the membrane
relaxation time τm(b). The force on the j’th cube is then
a random variable:

Fj ∝
1

τm(b)

∫
τm(b)

dt

∫
b3

d3r fh(r, t) (B.9)

with a mean square

〈F2
j 〉 ≈

b3

τm(b)

∫
τm(b)

dt

∫
b3

d3r〈fh(r, t)fh′(0, 0)〉. (B.10)

Equating the force amplitude F (b) to 〈F2
j 〉

1/2 and using
equation (2.4b) in equation (B.10) gives:

F (b) ≈

√
ηbkBT

τm(b)
(B.11)

To find the displacement u(b) in equation (3.5), we note
that, since τf(b) = τm(b), then uc(L)/τm(b) must be of
the order of the velocity of the membrane which, in turn,
must equal the hydrodynamic flow velocity v(b)(b/L) due
to the Stokeslet at the membrane. Combining this with
equations (A.1, A.3) gives:

u(b) ≈

(
τm(b)

ηb

)
F (b). (B.12)

Inserting the expression of the force amplitude at a length-
scale b (Eq. (B.11)) in equation (B.12) yields, together
with equation (B.8):

u(b) ≈ b

√
kBT

κ
(B.13)

for tensionless membranes (recall that b = λpη). If we use
equation (B.13) in equation (3.5) with Nτ (L) ≈
τm(L)/τm(b) ≈ (L/b)4, then we recover the appropriate
equilibrium scaling relation for a freely fluctuating mem-
brane 〈u2(L)〉 ∝ kBT

κ
L2.

Appendix C: Wall-induced pressure
for equilibrium membranes

In this appendix, we reproduce the equilibrium result equa-
tion (1.1) using the scaling procedure described in Sec-
tion 3.2. The averaged pressure 〈P (d)〉 in the case of in-
coherent force fluctuations is given by equation (3.12):

〈P (d)〉 ∝

√
Ns(Lc)

Nτ (Lc)

F (d)

L2
c

(uncorrelated)

with Ns(Lc) = (Lc/d)2 and Nτ (Lc) = τc(Lc)/τf(d). In the
case of coherent force fluctuations, the pressure is given
by equation (3.13):

〈P (d)〉 ∝

√
1

Nτ (Lc)

(
F (Lc)

L2
c

)
(correlated)

with Nτ (Lc) = τc(Lc)/τf(Lc).
For equilibrium membranes, the collision length Lc is

defined by 〈u2(Lc)〉 ≈ d2 where 〈u2(Lc)〉 is the height cor-
relation function computed in the absence of wall. It fol-
lows from Appendix B that the height correlation function
for equilibrium membranes is given by equation (B.7) in
both the permeative and the hydrodynamic regimes. We
thus find for the collision length:

Lc ∝


√

κ

kBT
d γ = 0

∞ γ 6= 0.

(C.1)

Note that the collision length is set to infinity for tense
membranes since our method is not sensitive enough to ac-
count for logarithmic dependencies. If the collision length

obeys Lc > L∗(d) =
(
d3

λpη

)1/2

, then the hydrodynamic

relaxation time exceeds the permeation time and perme-
ative relaxation dominates over hydrodynamic relaxation
(see Sect. 2.3). It follows from equation (C.1) that the per-

meative regime is restricted to the range d � λpηκ

kBT
. For

d� λpηκ

kBT
, relaxation is by hydrodynamic flow rather than

by permeation.
For equilibrium membranes, the collision time τc and

the autocorrelation time of force fluctuations τf are both
equal to the membrane relaxation time τm.

C.1. Permeative regime

If d� λpηκ

kBT
, permeative relaxation dominates and the re-

laxation rate of the membrane is τm(L)−1 = λp(γL−2 +
κL−4) (see Eq. (2.21)). Force fluctuations are incoherent
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in this case, we thus use equation (3.12) with the am-
plitude of the force fluctuation F (d) still given by equa-
tion (B.4):

F (d) ∝ d

√
kBT

λpτm(d)

since the permeative regime is not influenced by the pres-
ence of the wall. We find for tensionless membranes:

〈P (d)〉 ∝

√
kBTκ

L3
c

(C.2)

while 〈P (d)〉 = 0 for tense membranes within the precision
of our method. Using equation (C.1) in equation (C.2) re-
produces the equilibrium Helfrich pressure equation (1.1).

C.2. Hydrodynamic regime

If d � λpηκ

kBT
, relaxation is by hydrodynamic flow rather

than permeation and the relaxation rate of the membrane

is now τm(L)−1 ∝ d3

η (γL−4 + κL−6) (see Eq. (2.18)). In

this case, force fluctuations are coherent (as explained in
Sect. 3.1 and Appendix A), and we use equation (3.13)
to compute the wall pressure. Because of the presence
of the wall, in the hydrodynamic regime, we cannot use
equation (B.11) for the force amplitude F (Lc) entering
equation (3.13) since it was calculated for a membrane in
an infinite embedding medium (i.e. without wall). Using

equation (2.20b) gives 〈F (t)F (0)〉 ∝ L4
c
kBTη
d3 δ(t) and thus:

F (Lc) ∝ L
2
c

√
kBTη

d3τf(Lc)
· (C.3)

Using equation (C.3) in equation (3.13) leads to 〈P (d)〉 ∝
√
kBTκ
L3

c
for tensionless membranes and to 〈P (d)〉 = 0 for

tense membranes. Since the collision length is still given
by equation (C.1), we conclude that equation (3.13) re-
produces the Helfrich wall pressure in the case of hydro-
dynamic fluctuations.
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